3.1893 \(\int \frac{(1-2 x)^{3/2} (3+5 x)^3}{(2+3 x)^7} \, dx\)

Optimal. Leaf size=154 \[ \frac{2 \sqrt{1-2 x} (5 x+3)^3}{5 (3 x+2)^5}-\frac{(1-2 x)^{3/2} (5 x+3)^3}{18 (3 x+2)^6}-\frac{653 \sqrt{1-2 x} (5 x+3)^2}{2520 (3 x+2)^4}-\frac{\sqrt{1-2 x} (664915 x+413424)}{317520 (3 x+2)^3}-\frac{15313 \sqrt{1-2 x}}{444528 (3 x+2)}-\frac{15313 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{222264 \sqrt{21}} \]

[Out]

(-15313*Sqrt[1 - 2*x])/(444528*(2 + 3*x)) - (653*Sqrt[1 - 2*x]*(3 + 5*x)^2)/(2520*(2 + 3*x)^4) - ((1 - 2*x)^(3
/2)*(3 + 5*x)^3)/(18*(2 + 3*x)^6) + (2*Sqrt[1 - 2*x]*(3 + 5*x)^3)/(5*(2 + 3*x)^5) - (Sqrt[1 - 2*x]*(413424 + 6
64915*x))/(317520*(2 + 3*x)^3) - (15313*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(222264*Sqrt[21])

________________________________________________________________________________________

Rubi [A]  time = 0.0498541, antiderivative size = 154, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {97, 149, 145, 51, 63, 206} \[ \frac{2 \sqrt{1-2 x} (5 x+3)^3}{5 (3 x+2)^5}-\frac{(1-2 x)^{3/2} (5 x+3)^3}{18 (3 x+2)^6}-\frac{653 \sqrt{1-2 x} (5 x+3)^2}{2520 (3 x+2)^4}-\frac{\sqrt{1-2 x} (664915 x+413424)}{317520 (3 x+2)^3}-\frac{15313 \sqrt{1-2 x}}{444528 (3 x+2)}-\frac{15313 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{222264 \sqrt{21}} \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(3/2)*(3 + 5*x)^3)/(2 + 3*x)^7,x]

[Out]

(-15313*Sqrt[1 - 2*x])/(444528*(2 + 3*x)) - (653*Sqrt[1 - 2*x]*(3 + 5*x)^2)/(2520*(2 + 3*x)^4) - ((1 - 2*x)^(3
/2)*(3 + 5*x)^3)/(18*(2 + 3*x)^6) + (2*Sqrt[1 - 2*x]*(3 + 5*x)^3)/(5*(2 + 3*x)^5) - (Sqrt[1 - 2*x]*(413424 + 6
64915*x))/(317520*(2 + 3*x)^3) - (15313*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(222264*Sqrt[21])

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 145

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol] :
> Simp[((b^3*c*e*g*(m + 2) - a^3*d*f*h*(n + 2) - a^2*b*(c*f*h*m - d*(f*g + e*h)*(m + n + 3)) - a*b^2*(c*(f*g +
 e*h) + d*e*g*(2*m + n + 4)) + b*(a^2*d*f*h*(m - n) - a*b*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(n + 1)) + b^2*(c*(
f*g + e*h)*(m + 1) - d*e*g*(m + n + 2)))*x)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1))/(b^2*(b*c - a*d)^2*(m + 1)*(m
 + 2)), x] + Dist[(f*h)/b^2 - (d*(m + n + 3)*(a^2*d*f*h*(m - n) - a*b*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(n + 1)
) + b^2*(c*(f*g + e*h)*(m + 1) - d*e*g*(m + n + 2))))/(b^2*(b*c - a*d)^2*(m + 1)*(m + 2)), Int[(a + b*x)^(m +
2)*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && (LtQ[m, -2] || (EqQ[m + n + 3, 0] &&  !L
tQ[n, -2]))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2} (3+5 x)^3}{(2+3 x)^7} \, dx &=-\frac{(1-2 x)^{3/2} (3+5 x)^3}{18 (2+3 x)^6}+\frac{1}{18} \int \frac{(6-45 x) \sqrt{1-2 x} (3+5 x)^2}{(2+3 x)^6} \, dx\\ &=-\frac{(1-2 x)^{3/2} (3+5 x)^3}{18 (2+3 x)^6}+\frac{2 \sqrt{1-2 x} (3+5 x)^3}{5 (2+3 x)^5}-\frac{1}{270} \int \frac{(3+5 x)^2 (-1179+1170 x)}{\sqrt{1-2 x} (2+3 x)^5} \, dx\\ &=-\frac{653 \sqrt{1-2 x} (3+5 x)^2}{2520 (2+3 x)^4}-\frac{(1-2 x)^{3/2} (3+5 x)^3}{18 (2+3 x)^6}+\frac{2 \sqrt{1-2 x} (3+5 x)^3}{5 (2+3 x)^5}-\frac{\int \frac{(3+5 x) (-83907+75645 x)}{\sqrt{1-2 x} (2+3 x)^4} \, dx}{22680}\\ &=-\frac{653 \sqrt{1-2 x} (3+5 x)^2}{2520 (2+3 x)^4}-\frac{(1-2 x)^{3/2} (3+5 x)^3}{18 (2+3 x)^6}+\frac{2 \sqrt{1-2 x} (3+5 x)^3}{5 (2+3 x)^5}-\frac{\sqrt{1-2 x} (413424+664915 x)}{317520 (2+3 x)^3}+\frac{15313 \int \frac{1}{\sqrt{1-2 x} (2+3 x)^2} \, dx}{63504}\\ &=-\frac{15313 \sqrt{1-2 x}}{444528 (2+3 x)}-\frac{653 \sqrt{1-2 x} (3+5 x)^2}{2520 (2+3 x)^4}-\frac{(1-2 x)^{3/2} (3+5 x)^3}{18 (2+3 x)^6}+\frac{2 \sqrt{1-2 x} (3+5 x)^3}{5 (2+3 x)^5}-\frac{\sqrt{1-2 x} (413424+664915 x)}{317520 (2+3 x)^3}+\frac{15313 \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx}{444528}\\ &=-\frac{15313 \sqrt{1-2 x}}{444528 (2+3 x)}-\frac{653 \sqrt{1-2 x} (3+5 x)^2}{2520 (2+3 x)^4}-\frac{(1-2 x)^{3/2} (3+5 x)^3}{18 (2+3 x)^6}+\frac{2 \sqrt{1-2 x} (3+5 x)^3}{5 (2+3 x)^5}-\frac{\sqrt{1-2 x} (413424+664915 x)}{317520 (2+3 x)^3}-\frac{15313 \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )}{444528}\\ &=-\frac{15313 \sqrt{1-2 x}}{444528 (2+3 x)}-\frac{653 \sqrt{1-2 x} (3+5 x)^2}{2520 (2+3 x)^4}-\frac{(1-2 x)^{3/2} (3+5 x)^3}{18 (2+3 x)^6}+\frac{2 \sqrt{1-2 x} (3+5 x)^3}{5 (2+3 x)^5}-\frac{\sqrt{1-2 x} (413424+664915 x)}{317520 (2+3 x)^3}-\frac{15313 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{222264 \sqrt{21}}\\ \end{align*}

Mathematica [C]  time = 0.034196, size = 52, normalized size = 0.34 \[ \frac{(1-2 x)^{5/2} \left (\frac{16807 \left (26250 x^2+34911 x+11609\right )}{(3 x+2)^6}-490016 \, _2F_1\left (\frac{5}{2},5;\frac{7}{2};\frac{3}{7}-\frac{6 x}{7}\right )\right )}{31765230} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(3/2)*(3 + 5*x)^3)/(2 + 3*x)^7,x]

[Out]

((1 - 2*x)^(5/2)*((16807*(11609 + 34911*x + 26250*x^2))/(2 + 3*x)^6 - 490016*Hypergeometric2F1[5/2, 5, 7/2, 3/
7 - (6*x)/7]))/31765230

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 84, normalized size = 0.6 \begin{align*} -11664\,{\frac{1}{ \left ( -6\,x-4 \right ) ^{6}} \left ( -{\frac{15313\, \left ( 1-2\,x \right ) ^{11/2}}{10668672}}-{\frac{3037\, \left ( 1-2\,x \right ) ^{9/2}}{41150592}}+{\frac{256271\, \left ( 1-2\,x \right ) ^{7/2}}{4898880}}-{\frac{923549\, \left ( 1-2\,x \right ) ^{5/2}}{4898880}}+{\frac{1822247\, \left ( 1-2\,x \right ) ^{3/2}}{7558272}}-{\frac{750337\,\sqrt{1-2\,x}}{7558272}} \right ) }-{\frac{15313\,\sqrt{21}}{4667544}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x)^7,x)

[Out]

-11664*(-15313/10668672*(1-2*x)^(11/2)-3037/41150592*(1-2*x)^(9/2)+256271/4898880*(1-2*x)^(7/2)-923549/4898880
*(1-2*x)^(5/2)+1822247/7558272*(1-2*x)^(3/2)-750337/7558272*(1-2*x)^(1/2))/(-6*x-4)^6-15313/4667544*arctanh(1/
7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.56945, size = 197, normalized size = 1.28 \begin{align*} \frac{15313}{9335088} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) + \frac{18605295 \,{\left (-2 \, x + 1\right )}^{\frac{11}{2}} + 956655 \,{\left (-2 \, x + 1\right )}^{\frac{9}{2}} - 678093066 \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} + 2443710654 \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - 3125153605 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + 1286827955 \, \sqrt{-2 \, x + 1}}{1111320 \,{\left (729 \,{\left (2 \, x - 1\right )}^{6} + 10206 \,{\left (2 \, x - 1\right )}^{5} + 59535 \,{\left (2 \, x - 1\right )}^{4} + 185220 \,{\left (2 \, x - 1\right )}^{3} + 324135 \,{\left (2 \, x - 1\right )}^{2} + 605052 \, x - 184877\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x)^7,x, algorithm="maxima")

[Out]

15313/9335088*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/1111320*(18605295
*(-2*x + 1)^(11/2) + 956655*(-2*x + 1)^(9/2) - 678093066*(-2*x + 1)^(7/2) + 2443710654*(-2*x + 1)^(5/2) - 3125
153605*(-2*x + 1)^(3/2) + 1286827955*sqrt(-2*x + 1))/(729*(2*x - 1)^6 + 10206*(2*x - 1)^5 + 59535*(2*x - 1)^4
+ 185220*(2*x - 1)^3 + 324135*(2*x - 1)^2 + 605052*x - 184877)

________________________________________________________________________________________

Fricas [A]  time = 1.34077, size = 429, normalized size = 2.79 \begin{align*} \frac{76565 \, \sqrt{21}{\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )} \log \left (\frac{3 \, x + \sqrt{21} \sqrt{-2 \, x + 1} - 5}{3 \, x + 2}\right ) - 21 \,{\left (18605295 \, x^{5} - 46991565 \, x^{4} - 122053374 \, x^{3} - 75153042 \, x^{2} - 10947400 \, x + 1660816\right )} \sqrt{-2 \, x + 1}}{46675440 \,{\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x)^7,x, algorithm="fricas")

[Out]

1/46675440*(76565*sqrt(21)*(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 2160*x^2 + 576*x + 64)*log((3*x + sqrt(
21)*sqrt(-2*x + 1) - 5)/(3*x + 2)) - 21*(18605295*x^5 - 46991565*x^4 - 122053374*x^3 - 75153042*x^2 - 10947400
*x + 1660816)*sqrt(-2*x + 1))/(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 2160*x^2 + 576*x + 64)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)*(3+5*x)**3/(2+3*x)**7,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.3711, size = 178, normalized size = 1.16 \begin{align*} \frac{15313}{9335088} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{18605295 \,{\left (2 \, x - 1\right )}^{5} \sqrt{-2 \, x + 1} - 956655 \,{\left (2 \, x - 1\right )}^{4} \sqrt{-2 \, x + 1} - 678093066 \,{\left (2 \, x - 1\right )}^{3} \sqrt{-2 \, x + 1} - 2443710654 \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} + 3125153605 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 1286827955 \, \sqrt{-2 \, x + 1}}{71124480 \,{\left (3 \, x + 2\right )}^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x)^7,x, algorithm="giac")

[Out]

15313/9335088*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 1/71124480
*(18605295*(2*x - 1)^5*sqrt(-2*x + 1) - 956655*(2*x - 1)^4*sqrt(-2*x + 1) - 678093066*(2*x - 1)^3*sqrt(-2*x +
1) - 2443710654*(2*x - 1)^2*sqrt(-2*x + 1) + 3125153605*(-2*x + 1)^(3/2) - 1286827955*sqrt(-2*x + 1))/(3*x + 2
)^6